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In many plasma physics and charged-particle beam dynamics problems, Coulomb collisions are

modeled by a Fokker-Planck equation. In order to incorporate these collisions, we present a three-

dimensional parallel Langevin simulation method using a Particle-In-Cell (PIC) approach imple-

mented on high-performance parallel computers. We perform, for the �rst time, a fully self-consistent

simulation, in which the friction and di�usion coe�cients are computed from �rst principles. We

employ a two-dimensional domain decomposition approach within a message passing programming

paradigm along with dynamic load balancing. Object oriented programming is used to encapsulate

details of the communication syntax as well as to enhance reusability and extensibility. Performance

tests on the SGI Origin 2000, IBM SP RS/6000 and the Cray T3E-900 have demonstrated good

scalability. A test example for an initially anisotropic beam approaching thermal equilibrium is

given.

PACS numbers: 52.75

I. INTRODUCTION

Coulomb collisions play an important role in many

areas of plasma physics, accelerator physics, and astro-

physics. The long-range nature of the force leads to a

fundamental di�erence between how such collisions need

to be treated compared to the Boltzmann approach fa-

miliar when dealing with dilute neutral gases. Since most

collisions occur at large impact parameters, the particle

deection per collision is small. Moreover, at any given

time, a particular particle is interacting with many other

particles. For these reasons, a simple Boltzmann picture

of the collisions is not applicable (the Boltzmann collision

integral diverges at large distances).

When `soft' collisions such as those described above

are encountered, the appropriate transport equation is of

the Fokker-Planck form [1]. For the case of Coulomb col-

lisions between charged particles, the derivation of the

appropriate Fokker-Planck equation is somewhat deli-

cate. Depending on one's taste and notions of rigor,

several di�erent methods may be employed: the funda-

mental Boltzmann kernel may be expanded in powers

of momentum transfer and e�ectively linearized [2]; the

BBGKY formalism may be utilized with an expansion

in powers of the Coulomb logarithm used to truncate

the expansion at second order [3]; and a simple master

equation-like argument may also be used to derive the

Fokker-Planck collision kernel [1]. Fortunately, all these

derivations lead to essentially the same �nal result.

In many cases of physical interest, such as intense

beams, one needs to take into account the mean force

�eld of all other particles on the particle of interest (the

Vlasov-Poisson equation) as well as account for the soft

collisions. The inclusion of a Fokker-Planck collision

term on the right hand side of the Vlasov equation gives

rise to the Landau equation. The Landau equation is a

partial di�erential equation with self-consistently deter-

mined systematic force terms as well as external �elds,

if present, and self-consistent friction and di�usion coef-

�cients arising from the Fokker-Planck treatment of col-

lisions. Determination of all the self-consistent contribu-

tions requires the computation of convolution integrals

in either real or velocity space.

A successful approach to modeling the Vlasov-

Poisson equation is the popular PIC technique where

simulation particles are used to indirectly represent the

phase space distribution function and the Poisson equa-

tion is solved on a spatial grid. The advantages of the

PIC method include its relative conceptual simplicity,

high performance resulting from fast Poisson solvers, rel-

atively low memory cost for the grid (O(Lk) where k
is the number of spatial dimensions), and insensitivity to

the generation of small-scale structure in the distribution

function. Moreover, PIC simulations for accelerator ap-

plications have been implemented e�ciently on parallel

computing platforms [4]. Fokker-Planck collisions can be

included in the PIC method via the addition of friction

and (multiplicative) stochastic forces in the equations of

motion for the simulation particles: This is the Langevin

approach to incorporating soft collisions. It should be

kept in mind that numerical collisions are present in any

PIC simulation of the type just described. Thus, it is

appropriate to include the physical collisions only when

the numerical collisions are strongly suppressed in the

original Vlasov-Poisson simulation. This condition can

be met in some situations of interest [5].

The main di�culty in carrying out the Langevin

PIC program is the fact that the self-consistent friction

and di�usion coe�cients themselves depend on the veloc-

ity, thus, in principle, for every simulation particle one
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needs to carry out two convolution integrals in velocity

space followed by appropriate derivatives, also in velocity

space. Given the PIC point of view, one would wish to

introduce a velocity grid associated with each spatial grid

cell, carry out the convolutions on the velocity grid and

then use interpolation to determine the appropriate fric-

tion and di�usion coe�cients for the simulation particles

belonging to that particular spatial grid cell. These tasks

have been viewed as being much too di�cult to actually

carry out: either the Spitzer approximation has been em-

ployed [6] or an isotropic velocity distribution has been

assumed for the scattering particles [7].

However, on modern parallel machines these prob-

lems can be overcome (in large part) and the fully self-

consistent friction and di�usion coe�cients obtained nu-

merically for any distribution. The purpose of the present

paper is to explain and demonstrate how this can be

achieved. In short, the key points are that the veloc-

ity grids need not be very large (we found 323 to be

su�cient), one may associate a single velocity grid not

with a single spatial grid cell but with some number of

them (a form of coarse-graining), the number of particles

associated with each spatial `super-cell' is large enough

to guarantee low sampling noise in velocity space, and

�nally, the convolution and interpolation strategies al-

ready implemented for the spatial part of the Vlasov-

Poisson equation may be directly extended to velocity

space.

This paper is organized as follows. The Landau

equation and the numerical methods are presented in

Section 2. The parallel implementation is outlined in

Section 3, performance tests given in Section 4, and re-

sults reported in Section 5.

II. THE LANDAU EQUATION AND ITS

NUMERICAL SOLUTION

The Landau equation for the evolution of the single-

particle distribution function f is of the form [3]:
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where t is the time, r is the spatial vector, v is the veloc-

ity vector, m is the mass of particle, Fd is the dynamic

friction coe�cient andD is the di�usion coe�cient. They
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with n being the particle density, � being the Coulomb

logarithm, and �D =
p
kT=�0ne, the Debye length.

Here, k is the Boltzmann constant, T is the temperature,

�0 is the vacuum dielectricity, e is the charge of parti-

cle. The force F includes both the external force and the

self-generated mean �eld space charge force which can be

obtained from the Poisson equation:

r
2�(r) = �

�(r)

�0
(7)

and

�(r) =

Z
d
3
dvf(r;v) (8)

Here, � is the electric potential and � is the charge den-

sity.

The stochastic (multiplicative noise) particle equa-

tions of motion that follow from the Landau equation are

(Cf. Ref. [8])

r
0 = v; (9)

v
0 =

F

m
+ Fd +Q � �(t); (10)

where �(t) are Gaussian random variables with

h�i(t)i = 0; (11)

h�i(t)�j(t
0)i = �ij�(t� t0): (12)

The matrix Q is related to the di�usion coe�cient D

by Dij = QikQjk : The Qik can be obtained using an

orthogonal transformation, taking the positive root of the

eigenvalues and then transforming back.

The friction and di�usion coe�cients follow from

Eqns. (2) - (6). Computation of H and G requires

carrying out convolution integrals. To do this we em-

ploy a PIC charge deposition onto a velocity grid using

a linear scheme to get the distribution function f on the

grid. This is followed by a FFT-based convolution which

requires doubling the computational grid in each veloc-

ity direction in order to correctly impose open boundary

conditions [9]. The friction and di�usion coe�cients can

now be computed on the grid using second-order central

�nite di�erences. These coe�cients are then reinterpo-

lated back onto the particles using the original linear PIC

scheme. The self-generated space charge forces are also

calculated by depositing particles onto a spatial grid fol-

lowing the PIC approach. The scalar potential in the

Poisson equation is solved following the same FFT-based

method explained above and the force on the particles

obtained by numerical di�erentiation an reinterpolation.
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This force together with the external force �eld and the

forces due to dynamic friction force and di�usion are used

to advance the charged particles for one time-step using

a (stochastic) leap-frog algorithm.

III. OBJECT-ORIENTED PARALLEL

IMPLEMENTATION

We employ a two-dimensional domain decomposi-

tion approach following Refs. [10]. A schematic plot of

the two-dimensional decomposition on the y-z plane is

shown in Fig. 1. The solid grid lines de�ne the compu-

tational domain grids. The dashed lines de�ne the local

computational domain on each processor. The bound-

ary grids are the outer-most grids inside the physical

boundary. Guard grids are used for temporary storage of

grid quantities from neighboring processors. The physi-

cal computational domain is de�ned as a 3-dimensional

rectangular box with range xmin � x � xmax, ymin �

y � ymax, and zmin � z � zmax. This domain is de-

composed on the y � z plane into a number of small

rectangular blocks and these blocks are mapped to a log-

ical two-dimensional Cartesian processor grid, one rect-

angular block per processor. The range of a block on

a single processor is de�ned as xmin � x � xmax,

ylcmin � y � ylcmax, and zlcmin � z � zlcmax. The

subscripts lcmin and lcmax specify local minima and

maxima. The mesh grid stores �eld-related quantities

such as charge density and electric �eld. The number of

grid points along three dimensions on a single processor

is de�ned as:

Nxlocal = int[(xmax � xmin)=hx] + 1 (13)

Nylocal = int[(ylcmax � ymin)=hy]�

int[(ylcmin � ymin)=hy] +Ng (14)

Nzlocal = int[(zlcmax � zmin)=hz]�

int[(zlcmin � zmin)=hz] +Ng (15)

where hx, hy, and hz are the mesh sizes along the x, y
and z directions, respectively. The quantity Ng refers

to the number of guard grids in Nylocal and Nzlocal.
Ng = 2 if the number of processors in that dimension

is greater than 1; otherwise, Ng = 1. Particles with spa-

tial positions within the local computational boundary

are assigned to the processor containing that part of the

physical domain.

The parallel computation starts with constructing a

2-D logical Cartesian processor grid, reading input data

from processor 0 and broadcasting it to the other proces-

sors, setting up the local initial computational domain,

initializing objects, and generating particles from the ini-

tial distribution function. The particles generated on

each processor advance following each time step. If a

particle moves outside the local computational domain,

it is sent to the corresponding processor where it is now

located. A particle manager function handles explicit

communication using MPI. The y and z positions of ev-

ery particle on each processor are checked. The particle

is copied to one of its four bu�ers and sent to one of its

four neighboring processors when its y or z position is

outside the local computational domain. After a proces-

sor receives the particles from its neighboring processors,

it decides among those particles whether some of them

will be further sent out or not. The outgoing particles

are counted and copied into four temporary arrays. The

remaining particles are copied into another temporary

array. This process is repeated until there is no outgo-

ing particle found on all processors. Finally, the particles

in the temporary storage along with the particles left in

the original particle array are copied into a new particle

array.

FIG. 1. Schematic of the the 2-D domain decomposition in
the y � z domain.

After each particle moves to its local computational

domain, a linear particle-deposition scheme is carried out

for all processors to obtain the charge density on the

grid. Particles located between the boundary grid and

computational domain boundary will also contribute to

the charge density on the boundary grids of neighboring

processors. Hence, explicit communication is required to

send the charge density on the guard grids, which is from

the local particle deposition, to the boundary grids of

neighboring processors to sum up the total charge density

on the boundary grids. With the charge density on the

grids, Hockney's FFT algorithm [9] is used to solve the

Poisson equation with open boundary conditions. This

algorithm requires the original grid number to be doubled

in each dimension. The charge density on the original

grid is kept the same, and the charge density elsewhere

is set to 0. The Green's function on the original grid is

de�ned as

Gp;q;r =
1p

(hx(p� 1))2 + (hy(q � 1))2 + (hz(r � 1))2
;

(16)

where p = 1; : : : ; Nx + 1, q = 1; : : : ; Ny + 1, r =

1; : : : ; Nz + 1. Here, Nx, Ny, Nz are the total com-

putation grid numbers without including guard grids in

3



all three dimensions. For points outside the original grid,

symmetry is used to de�ne the Green's function accord-

ing to

Gp;q;r = G2Nx�p+2;q;r; (17)

Gp;q;r = Gp;2Ny�q+2;r; (18)

Gp;q;r = Gp;q;2Nz�r+2; (19)

where p = Nx + 2; : : : ; 2Nx, q = Ny + 2; : : : ; 2Ny,
r = Nz+2; : : : ; 2Nz. Communication is required to dou-

ble the original distributed 3-dimensional grid explicitly.

This can be avoided by including this process into the

3-dimensional FFT. In the 3-dimensional parallel FFT,

we have taken advantage of the undistributed dimension

along the x dimension, where a local serial FFT can be

done in that dimension for all processors. A local tem-

porary two-dimensional array with size (2Nx;Nylocal) is

de�ned to contain part of the charge density at �xed z.
The charge density on the original grid is copied into the

(Nx;Nylocal) part of the temporary array. The rest of

the temporary array is �lled with 0. In regard to the FFT

of the Green's function, symmetry can again be used to

obtain the values of the Green's function in the region

(Nx + 2; Nylocal). After the local two-dimensional FFT

along x is done, it is copied back to a slice of a new 3-

dimensional array with size (2Nx;Nylocal; Nzlocal). A

loop through Nzlocal gives the FFT along x for the three

dimensional array. This is followed by a transpose to

switch the x and y indices. Now, the 3-dimensional ma-

trix has size (Ny;Nx0
local

; Nzlocal) where Nx0
local

is the

new local number of grids in the x dimension along the

y dimension processors. A similar procedure yields the

FFT along the y direction for a doubled grid of size

(2Ny;Nx0
local

; Nzlocal). Another transpose is used to

switch the y and z indices and a local FFT along z with

a double-size grid is done on all processors to �nish the

3-dimensional FFT for the double-size grid in all three

dimensions. During the inverse parallel FFT, a reverse

process is employed to obtain the potential on the origi-

nal grids.

From the potential on the grid, we calculate the elec-

tric �eld using central �nite di�erences. To calculate

the electric �eld on a boundary grid, the potential on

a boundary grid of neighboring processors is required. A

communication pattern similar to that employed in the

charge density summation on the boundary grids is used

to send the potential from the boundary grids to the

guard grids of neighboring processors. After the elec-

tric �eld on the grids is obtained, the local particle-push

requires interpolation from the grids onto the local parti-

cles. Since we have used a linear PIC scheme, the electric

�eld of particles between the boundary grid and compu-

tational domain boundary will also depend on the electric

�eld on the boundary grid of neighboring processors. A

similar communication pattern is used to send the elec-

tric �eld from the boundary grids to the guard grids of

the neighboring processors. With the electric �eld on

grids local to each processor, interpolation is done for

all processors to obtain the space-charge force on every

particle. The dynamic friction coe�cient and di�usion

coe�cient are calculated on each processor. The local

computational grids are lumped into a small number of

subdomains (the super-cells). Particles within each sub-

domain will have the same friction and di�usion coe�-

cients. A three-dimensional velocity grid is built on each

subdomain for all particles in this domain. Following the

scheme described in Section 2, we compute the friction

and di�usion coe�cients on all processors and reinterpo-

late them back to the local particles. The local particles

are then updated in velocity space.

Dynamic load balancing is employed with adjustable

frequency to keep the number of particles on each pro-

cessor approximately equal. A density function is de�ned

to �nd the local computational domain boundary so that

the number of particles on each processor is roughly bal-

anced. This number depends on the local integration of

the charge density on each processor. To determine the

local boundary, �rst, the three-dimensional charge den-

sity is summed up along the x direction on each processor
to obtain a two-dimensional density function. This func-

tion is distributed locally among all processors. Then,

the two-dimensional density function is summed up along

the y direction to get the local one-dimensional charge

density function along z. This density function is broad-

cast to the processors along the y direction. The local

charge density function is gathered along z and broad-

cast to processors along the z direction to get a global

z direction charge density distribution function on each

processor. Using this global z direction density distri-

bution, the local computational boundary in the z di-

mension can be determined assuming that each proces-

sor contains a fraction of the total number of particles,

about equal to 1=nprocz, where nprocz is the number of

processors along the z direction in the two-dimensional

Cartesian processor grid. A similar process is used to

determine the local computational boundary in the y di-

rection. Strictly speaking, the above algorithm will work

correctly for a two-dimensional density distribution func-

tion which can be separated as a product of two one-

dimensional functions along each direction. However, our

experience has been that this algorithm works reasonably

well for a broad range of distributions.

The simulation implemented uses object-oriented

programming in C++. Based on our previous experi-

ence of object-oriented software design for linear acceler-

ator beam dynamics simulations, we have de�ned a par-

ticle manager class, Ptclmger.C to move particles among

the processors, a �eld data exchanger class, Fldexch.C,

to communicate the neighboring data, a utility class,

Utility, to manage global communication in the matrix

transpose, a input-output handler class, InOut.C to inter-

face with the outside environment, and a two-dimensional
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Cartesian processor class, Pgrid2d.C. These classes work

together as a low level class to encapsulate communica-

tion details used in the parallel message passing program-

ming paradigm. High level application classes, the beam

class, �eld class and beam line element class, are built on

top of the low level classes without knowing the details of

the communication. Polymorphism is used to access con-

crete beam line elements, e.g. quadrupole, in the beam

line element class de�nition. A simulation manager class,

AccSimulator.C, is de�ned to run the simulation.

IV. PERFORMANCE TESTING
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FIG. 2. Time cost as a function of number of processors on
the Origin 2000 and the T3E-900.

The parallel performance of the simulation code was

tested on a distributed memory machine, the Cray T3E-

900, and on a distributed shared memory machine, the

SGI Origin 2000 and IBM SP RS/6000. Fig. 2 gives the

time cost as a function of number of processors on these

machines. The total numerical particle number is two

million with a 64 � 64 � 64 spatial grid for the electric

�eld solver, 82 super-cells and a 32�32�32 velocity grid

for the dynamic friction and di�usion coe�cients. Good

scalability is obtained on both machines. The slightly

better performance on the SGI Origin may be due to the

much larger secondary cache (4 MB) than that of Cray

T3E (100 KB) and faster clock speed (250 MHz) than

that of IBM SP (200 MHz). To investigate the e�ect of

problem size on the scalability, we tested the code with

an increased spatial grid 83 for the dynamic friction and

di�usion coe�cients. Fig. 3 gives the speedup (normal-

ized by the time on eight processors) on the SGI Origin

2000 as a function of number of processors for two di�er-

ent problem sizes. Increasing the problem size improves

the scalability of the code.
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FIG. 3. Speed-up as a function of processor number for two
di�erent problem sizes.

V. RESULTS

As a test case we applied our method to compute the

friction and di�usion coe�cients for a Maxwellian veloc-

ity distribution, the results of which are shown in Figs.

4 - 6. The asymptotic fall-o� in Fd=v as 1=v3 at large v
is seen nicely in Fig. 6. An important point that is also

clearly demonstrated is the modest number of particles

needed per spatial super-cell to reach convergence of the

computed quantities.
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FIG. 4. Diagonal and o�-diagonal di�usion coe�cients for
a Maxwellian distribution as a function of velocity. The ex-
pected fall-o� in the velocity is clearly seen and excellent re-
sults are obtained even for a small number of sampled parti-
cles (there is essentially no di�erence between 3000 and 1.25
million particles).
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FIG. 7. Transverse and longitudinal initial velocity distri-
butions.

We have also simulated the time evolution of of an

initially anisotropic electron beam. The beam has a uni-

form spatial distribution in a three-dimensional square

box with a size of 3:53 cm3. The particle density is

1012cm�3. The initial velocity distribution is also a

step function. Fig.7 gives the initial velocity distribution

along the transverse and longitudinal directions. The two

distributions have di�erent amplitudes since they have

di�erent initial temperature. Fig.8 shows the transverse

and longitudinal distributions after 60 steps.
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FIG. 8. Transverse and longitudinal initial distributions af-
ter 60 steps.

We see that the velocity distributions along both

directions approach the thermal Gaussian distributions.

Fig.9 shows the time evolution of the temperature in

transverse and longitudinal directions as a function of

time.
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FIG. 9. Transverse and longitudinal temperature as a func-
tion of time.

It is seen that the longitudinal temperature gradu-

ally decreases, and the transverse temperature gradually

increases, to reach an equipartitioned thermal equilib-

rium due to the intra-beam Coulomb collision.
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